Distinct Cdk1 Requirements during Single-Strand Annealing, Noncrossover, and Crossover Recombination
نویسندگان
چکیده
Repair of DNA double-strand breaks (DSBs) by homologous recombination (HR) in haploid cells is generally restricted to S/G2 cell cycle phases, when DNA has been replicated and a sister chromatid is available as a repair template. This cell cycle specificity depends on cyclin-dependent protein kinases (Cdk1 in Saccharomyces cerevisiae), which initiate HR by promoting 5'-3' nucleolytic degradation of the DSB ends. Whether Cdk1 regulates other HR steps is unknown. Here we show that yku70Δ cells, which accumulate single-stranded DNA (ssDNA) at the DSB ends independently of Cdk1 activity, are able to repair a DSB by single-strand annealing (SSA) in the G1 cell cycle phase, when Cdk1 activity is low. This ability to perform SSA depends on DSB resection, because both resection and SSA are enhanced by the lack of Rad9 in yku70Δ G1 cells. Furthermore, we found that interchromosomal noncrossover recombinants are generated in yku70Δ and yku70Δ rad9Δ G1 cells, indicating that DSB resection bypasses Cdk1 requirement also for carrying out these recombination events. By contrast, yku70Δ and yku70Δ rad9Δ cells are specifically defective in interchromosomal crossover recombination when Cdk1 activity is low. Thus, Cdk1 promotes DSB repair by single-strand annealing and noncrossover recombination by acting mostly at the resection level, whereas additional events require Cdk1-dependent regulation in order to generate crossover outcomes.
منابع مشابه
Srs2 and Sgs1–Top3 Suppress Crossovers during Double-Strand Break Repair in Yeast
Very few gene conversions in mitotic cells are associated with crossovers, suggesting that these events are regulated. This may be important for the maintenance of genetic stability. We have analyzed the relationship between homologous recombination and crossing-over in haploid budding yeast and identified factors involved in the regulation of crossover outcomes. Gene conversions unaccompanied ...
متن کاملThe Single-End Invasion An Asymmetric Intermediate at the Double-Strand Break to Double-Holliday Junction Transition of Meiotic Recombination
We identify a novel meiotic recombination intermediate, the single-end invasion (SEI), which occurs during the transition from double-strand breaks (DSBs) to double-Holliday junction (dHJs). SEIs are products of strand exchange between one DSB end and its homolog. The structural asymmetry of SEIs indicates that the two ends of a DSB interact with the homolog in temporal succession, via structur...
متن کاملCrossover/Noncrossover Differentiation, Synaptonemal Complex Formation, and Regulatory Surveillance at the Leptotene/Zygotene Transition of Meiosis
Yeast mutants lacking meiotic proteins Zip1, Zip2, Zip3, Mer3, and/or Msh5 (ZMMs) were analyzed for recombination, synaptonemal complex (SC), and meiotic progression. At 33 degrees C, recombination-initiating double-strand breaks (DSBs) and noncrossover products (NCRs) form normally while formation of single-end invasion strand exchange intermediates (SEIs), double Holliday junctions, crossover...
متن کاملSaccharomyces cerevisiae Mer3 Helicase Stimulates 3′–5′ Heteroduplex Extension by Rad51 Implications for Crossover Control in Meiotic Recombination
Crossover and noncrossover recombinants can form by two different pathways during meiotic recombination in Saccharomyces cerevisiae. The MER3 gene is known to affect selectively crossover, but not noncrossover, recombination. The Mer3 protein is a DNA helicase that unwinds duplex DNA in the 3' to 5' direction. To define the underlying molecular steps of meiotic recombination, we investigated th...
متن کاملSequence divergence impedes crossover more than noncrossover events during mitotic gap repair in yeast.
Homologous recombination between dispersed repeated sequences is important in shaping eukaryotic genome structure, and such ectopic interactions are affected by repeat size and sequence identity. A transformation-based, gap-repair assay was used to examine the effect of 2% sequence divergence on the efficiency of mitotic double-strand break repair templated by chromosomal sequences in yeast. Be...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 7 شماره
صفحات -
تاریخ انتشار 2011